<html>
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8">
</head>
<body dir="auto">
FYI <br>
<br>
<div id="AppleMailSignature" dir="ltr">
<div>Don Haider-Markel</div>
Sent via airborne drone</div>
<div dir="ltr"><br>
Begin forwarded message:<br>
<br>
</div>
<blockquote type="cite">
<div dir="ltr"><b>From:</b> Paul Johnson via Methods-l <<a href="mailto:methods-l@lists.ku.edu">methods-l@lists.ku.edu</a>><br>
<b>Date:</b> February 21, 2019 at 12:34:24 PM CST<br>
<b>To:</b> <<a href="mailto:methods-l@lists.ku.edu">methods-l@lists.ku.edu</a>>, "<a href="mailto:CRMDA-workgroups@googlegroups.com">CRMDA-workgroups@googlegroups.com</a>" <<a href="mailto:CRMDA-workgroups@googlegroups.com">CRMDA-workgroups@googlegroups.com</a>><br>
<b>Subject:</b> <b>[Methods-l] CRMDA Activities for Friday, February 22 1-4pm</b><br>
<b>Reply-To:</b> Paul Johnson <<a href="mailto:pauljohn@ku.edu">pauljohn@ku.edu</a>>, Methodology Related Events <<a href="mailto:methods-l@lists.ku.edu">methods-l@lists.ku.edu</a>><br>
<br>
</div>
</blockquote>
<blockquote type="cite">
<div dir="ltr"><span>Dear Friends of CRMDA</span><br>
<span></span><br>
<span>Because last week's Python group was postponed due to the snow event, we will be having three events tomorrow afternoon.</span><br>
<span></span><br>
<span>1. Python and Natural Language: 1PM Watson 455</span><br>
<span></span><br>
<span>Here again is the link to the materials we’ve been working with:</span><br>
<span></span><br>
<span><a href="https://www.dropbox.com/sh/fm0j3rftm4eb0gj/AABckgOaI1muhTMIkH8DJZhka?dl=0">https://www.dropbox.com/sh/fm0j3rftm4eb0gj/AABckgOaI1muhTMIkH8DJZhka?dl=0</a></span><br>
<span></span><br>
<span>Please download the folder and explore the Jupyter Notebook.  We are interested to hear thoughts about the tfidf matrix, calculations of distance, and any other interesting things you find.</span><br>
<span></span><br>
<span>2. Big Data: 2PM Watson 455</span><br>
<span></span><br>
<span>Variable selection and regression "regularization"; group LASSO.</span><br>
<span></span><br>
<span>3. Presentation about 'deep learning' with Neural Networks. 3PM Watson 455.</span><br>
<span></span><br>
<span><a href="https://crmda.ku.edu/pirhosseinloo-20190221">https://crmda.ku.edu/pirhosseinloo-20190221</a></span><br>
<span></span><br>
<span>Supervised Speech Separation Based on Deep Neural Networks</span><br>
<span>Presenter: Shadi Pir Hosseinloo</span><br>
<span></span><br>
<span>In real world environments, the speech signals received by our ears are usually a combination of different sounds that include not only the target speech, but also acoustic interference like music, background noise, and competing speakers. This interference
 has negative effect on speech perception and degrades the performance of speech processing applications such as automatic speech recognition (ASR), speaker identification, and hearing aid devices. One way to solve this problem is using source separation algorithms
 to separate the desired speech from the interfering sounds. A supervised speech separation algorithm is proposed based on deep neural networks to estimate the time frequency masks. The main goal of the proposed algorithm is to increase the intelligibility
 and quality of the recovered speech from noisy environments, which has the potential to improve both speech processing applications and signal processing strategies for hearing aid / cochlear implant technology.</span><br>
<span></span><br>
<span>PJ</span><br>
<span></span><br>
<span>lost my sig in the power outage :(</span><br>
<span></span><br>
<span>_______________________________________________</span><br>
<span>Methods-l mailing list</span><br>
<span><a href="mailto:Methods-l@lists.ku.edu">Methods-l@lists.ku.edu</a></span><br>
<span><a href="https://lists.ku.edu/listinfo/methods-l">https://lists.ku.edu/listinfo/methods-l</a></span><br>
</div>
</blockquote>
</body>
</html>